Math 2B: Linear Algebra - Spring 2023
Mondays, Tuesdays, Wednesdays and Thursdays 10:30-11:20 am in S-45
Instructor: Dr. Cheryl Jaeger Balm
Email: balmcheryl@fhda.edu
Office number: S-76g

This is a HYBRID class which requires you to be on campus four days a week.

Each week you will have 4 hours of class in-person and 1 hour online asynchronous.

Tips for success (however YOU define it!):

- Expect to spend 6-10 hours a week outside of class studying and working on at-home assignments. Schedule these hours just as you would work or class!
- Form a study group, and make use of the tutoring center.
- Come to office hours, and start your assignments early so you can ask questions in office hours.
- Make an appointment to meet with me (virtually or in-person) if you are busy during regular office hours or want to talk one-on-one.

Office Hours

Tuesdays and Wednesdays, 11:30 am - 12:30 pm, in the tutoring center S-43
Attendance: Students enrolled in this class are expected to be present in-person for all class meetings. If you miss a class, you are responsible for covering the material before you return to class. You should get notes from a classmate, read the corresponding section(s) of the textbook, and check Canvas for additional materials. You are also responsible for knowing about any changes to the syllabus and/or schedule that may be discussed in class. Please stay home if you are not feeling well or awaiting results from a COVID test, but otherwise you should plan to attend all class meetings.

Student Learning Outcomes:

1. Construct and evaluate linear systems/models to solve application problems.
2. Solve problems by deciding upon and applying appropriate algorithms/concepts from linear algebra.
3. Apply theoretical principles of linear algebra to define properties of linear transformations, matrices and vector spaces.

Textbook: Elementary Linear Algebra, by Anton et al (12th edition)
Canvas: All class announcements will be on Canvas, which you can access through MyPortal. I recommend that you also download the Canvas app if you have a smart phone. Canvas messages are the best way to email me.

Once you have accessed Canvas, please go to Account \rightarrow Notifications and adjust your Notification Preferences so that you have selected "Notify me right away" for Announcement and Submission Comment. Other notification settings are up to you.

Calculators: No calculators are required for this class, but you will be permitted to use a scientific calculator without graphing capabilities during exams.

Cell phones and other devices: You may bring a laptop or tablet to class to access your eBook or to take notes. However, cell phones, tablets, laptops and other electronic devices must not become a distraction to you or your classmates. If I see or hear you using a device during class to access unrelated content, I may confiscate the device until the end of that class meeting.

Homework: At the end of this syllabus there is a list of suggested homework problems for each section that we will cover in your textbook. This homework will not be collected or graded. However, solving these problems is essential to understanding the class material (and earning a good grade!). After each class, you are expected to work on the relevant assigned problems before the next class meeting. Do not save all your homework for the weekends; you will fall behind!

Podcast: You will create 4 podcast episodes for this class. Details are in the Podcast Project instructions. Your podcast will account for 20% of your course grade (5% per episode).

Quizzes: There will be 8 quizzes throughout the quarter. All quizzes will be take-home. They will be handed out at the end of class on Thursday and due at the start of class the following Monday. Remember, there is a difference between collaborating and cheating! Your lowest quiz score will be dropped. Quizzes will account for 30% of your course grade ($\sim 4 \%$ each).

Midterm Exams: There will be 4 midterm exams. Each midterm will focus on the material covered since the previous exam. The midterm exam dates are on the calendar. Each midterm exam will account for 10% of your course grade.

Final Exam: Your final exam will be Thursday, June 29, 9:15-11:15 am. Your final will account for 10% of your course grade.

Course Grades:

Podcast	7 Quizzes	4 Midterms	Final					
20%	30%	40%	10%					
$(5 \%$ each $)$	$(\sim 4 \%$ each $)$	$(10 \%$ each $)$		\quad	Grade	A	B	C
:---	:---	:---	:---					
Overall percent	≥ 90	≥ 80	≥ 70	≥ 60				

Disability Statement: De Anza College makes reasonable accommodations for people with documented disabilities. Please notify Disability Support Programs and Services (DSPS) if you have any physical, psychological or other disabilities, vision or hearing impairments or ADD/ADHD. More details can be found here https://www.deanza.edu/dsps/

Academic Integrity: Learning involves the pursuit of truth, which cannot be pursued by presenting someone else's work as your own. Each student must pursue their academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Any suspected instance of academic dishonesty on any assignment will be reported to the college and may result in a 0 on the assignment and/or a failing grade in the class. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to https://www.deanza.edu/policies/academic_integrity.html.

Tentative in-class schedule (subject to change):

$$
\mathrm{Q}=\text { quiz, } \mathrm{P}=\text { podcast, } \mathrm{E}=\text { exam }
$$

Week	Monday	Tuesday	Wednesday	Thursday
Wk 1: Apr 10-13	1.1	1.2	1.2	1.3
Wk 2: Apr 17-20	$\begin{aligned} & \text { Q1 due } \\ & 1.4 \end{aligned}$	1.4	1.5	1.6
Wk 3: Apr 24-27	$\begin{aligned} & \text { Q2 due } \\ & 1.7 \end{aligned}$	1.8	$\begin{aligned} & \text { E1 } \\ & (1.1-1.7) \end{aligned}$	$\begin{aligned} & 1.8 \\ & \text { P1 due Sunday } \end{aligned}$
Wk 4: May 1-4	$\begin{aligned} & \text { Q3 due } \\ & 1.9 \end{aligned}$	2.1	2.2	2.3, 3.2
Wk 5: May 8-11	$\begin{aligned} & \text { Q4 due } \\ & 3.3 \end{aligned}$	3.3, 3.5	4.1	$\begin{aligned} & 4.2 \\ & \text { P2 due Sunday } \end{aligned}$
Wk 6: May 15-18	$\begin{aligned} & \text { Q5 due } \\ & \text { E2 } \\ & (1.8-3.5) \end{aligned}$	4.3, 4.4	4.4, 4.5	4.6
Wk 7: May 22-25	Q6 due 4.7	4.7, 4.8	4.8, 4.9	5.1
Wk 8: May 29 - June 1	Holiday No class	5.1, 5.2	$\begin{aligned} & \hline \text { E3 } \\ & (4.1-4.9) \end{aligned}$	$\begin{aligned} & \hline 5.2 \\ & \text { P3 due Sunday } \\ & \hline \end{aligned}$
Wk 9: June 5-8	$\begin{aligned} & \text { Q7 due } \\ & 6.1,6.2 \end{aligned}$	6.3	7.1	7.2
Wk 10: June 12-15	$\begin{aligned} & \text { Q8 due } \\ & 9.1 \end{aligned}$	8.1	$\begin{aligned} & \mathrm{E} 4 \\ & (5.1-7.2,9.1) \end{aligned}$	$\begin{aligned} & 8.2 \\ & \text { P4 due Sunday } \end{aligned}$
Wk 11: June 19-22	Holiday No class	8.2, 8.3	8.4	Wrap up
Finals: June 26-29				$\begin{aligned} & \text { Final } \\ & 9: 15-11: 15 \end{aligned}$

Detailed plan and suggested homework:

Week 1			
Mon 4/10	1.1	Linear Systems Matrices and Elementary Row Operations HW 1.1: 1, 5, 7, 19, 25, 26, 27, T/F: b, d-h	
Tues 4/11 1.2	(Reduced) Row Echelon Form Gaussian and Gauss-Jordan Elimination		
Wed 4/12 1.2	Homogeneous Systems HW 1.2: 1, 3, 9-19 odd, 23, 25, 31, 32, 40, T/F: a-h		
Thur 4/13 1.3	Row, Column and Square Matrices Matrix Operations Submatrices and Partitions Transpose and Trace HW 1.3: 1, 3, 5, 11, 13, 15, 23, 26, 29, 33, 34ab, 35, T/F: a-i, m	Quiz 1 Mue Monday $(1.1,1.2)$	

Week 2			
Mon 4/17	1.4	Properties of Matrix Operations Identity Matrices Inverse Matrices	$\begin{gathered} \text { Quiz } 1 \\ \text { due } \end{gathered}$
Tues 4/18	1.4	Matrix Exponents Proof by Induction Matrix Polynomials Properties of Transpose Matrices HW 1.4: 15, 17, 21-27 odd, $35,37,39,43,44,45$ a, 46, 49	
Wed 4/19	1.5	Computing Inverse Matrices HW 1.5: 9-19 odd, T/F: d-f	
Thur 4/20	1.6	Linear Systems and Augmented Matrices Properties of Inverse Matrices HW 1.6: 1-7 odd, 10, 12, 13, 15, 16, 18, T/F: a-c, f, g	$\begin{gathered} \text { Quiz 2 } \\ \text { due Monday } \\ (1.3-1.5) \\ \hline \end{gathered}$
Week 3			
Mon 4/24	1.7	Diagonal and Triangular Matrices Symmetric Matrices HW 1.7: 1-9 odd, 13, 17, 19, 21, 26, 27, 32, 35, 41, T/F: all	Quiz 2 due
Tues 4/25	1.8	n-dimensional Euclidean Space \mathbb{R}^{n} Transformations and Operators Matrix Transformations	
Wed 4/26	Exam 1 (1.1-1.7)		
Thur 4/27	1.8	Linear Transformations Special Types of Operators HW 1.8: 1-9 odd, $13,15,19,23,25,31,37,45,48$, T/F: a-d, f, g	Podcast \#1 due Sunday Quiz 3 due Monday (1.6, 1.7)
Week 4			
Mon 5/1	1.9	Composition of Transformations Inverse Transformations HW 1.9: $5,7,9,13,15,17,21,24$, T/F: a-c, e	$\begin{gathered} \text { Quiz } 3 \\ \text { due } \end{gathered}$
Tues 5/2	2.1	Determinant HW 2.1: $11,13,15,16,21,23,25,26,29,31,33,39$, T/F b, c, e-j	
Wed 5/3	2.2	Determinants and Row Operations HW 2.2: 5-21 odd, 29, 31, T/F a-c, e, f	
Thur 5/4	2.3 3.2	Determinant Properties HW 2.3: 7-17 odd, 35, T/F: a, c, d, g, h, j Vectors and Inner Products Cauchy-Schwartz and Triangle Inequalities HW 3.2: 1, 3, 5, 9, 12, 15, 16, 17b, T/F a, c, d, f-j	Quiz 4 due Monday $(1.8-2.2)$

Week 5			
Mon 5/8	3.3	($n-1$)-dimensional Subspaces (Lines and Planes) Orthogonal Projection	$\begin{gathered} \text { Quiz } 4 \\ \text { due } \end{gathered}$
Tues 5/9	$\begin{aligned} & 3.3 \\ & 3.5 \end{aligned}$	Distances and the General Pythagorean Theorem HW 3.3: 1, 9, 11, 17, 19, 23, 25, 27, 33, T/F: b-g Cross Product HW 3.5: 1, 3, 7, 19, 29, 30, T/F: b-f	
Wed 5/10	4.1	General Vector Spaces Vector Space Axioms HW 4.1: 3-10, 13, 14, 21, 22, T/F: a-e	
Thur 5/11	4.2	Subspaces HW 4.2: 23, 29, T/F: a-e, h	Podcast \#2 due Sunday Quiz 5 due Monday (2.3-3.5)
Week 6			
Mon 5/15		Exam 2 (1.8, 1.9, 2.1-2.3, 3.2, 3.3, 3.5)	$\begin{gathered} \text { Quiz } 5 \\ \text { due } \end{gathered}$
Tues 5/16	$\begin{aligned} & 4.3 \\ & 4.4 \end{aligned}$	Spanning Sets HW 4.3: 1, 3, 7, 13, 17, 23, T/F: a, c, e, f Linear Independence	
Wed 5/17	$\begin{aligned} & 4.4 \\ & 4.5 \end{aligned}$	Wronskian HW 4.4: 1ab, 3, 7-21 odd Bases HW 4.5: 1, 2, 7, 21, 30, T/F: a-c	
Thur 5/18	4.6	Dimension Span of a Set HW 4.6: 1-7 odd, 13, 17, T/F: a-e	Quiz 6 due Monday (4.1-4.5)
Week 7			
Mon 5/22	4.7	Coordinates and Coordinate Maps Change of Basis and Transition Matrices	$\begin{gathered} \text { Quiz } 6 \\ \text { due } \end{gathered}$
Tues 5/23	$\begin{aligned} & 4.7 \\ & 4.8 \end{aligned}$	Computing Transition Matrices HW 4.7: 1-9 odd, 13-19 odd, T/F: a-c, f Row, Column and Null Spaces	
Wed 5/24	4.8 4.9	Rank HW 4.8: 3-11 odd, 13a, 15, 17, 18, 21, 25, 30, 33, T/F: a-e, i Nullity Fundamental Spaces	
Thur 5/25	5.1	Eigenvalues and Eigenvectors HW 4.9: 1, 7, 11, 13, 19, 22, 23, 28-31, T/F: a-e, g, h	Exam 3 Tuesday

Week 8			
Tues 5/30	$\begin{aligned} & 5.1 \\ & 5.2 \\ & \hline \end{aligned}$	Eigenspaces HW 5.1: 1-15 odd, 25, T/F: b, c Similarity	
Wed 5/31	Exam 3 (4.1-4.9)		
Thur 6/1	5.2	Diagonalization HW 5.2: 1-7 odd, 11, 13, 15, 25, 26, 27, 31, 33, 34a, T/F: a-h	Podcast \#3 due Sunday Quiz 7 due Monday (4.6-5.1)
Week 9			
Mon 6/5	$\begin{aligned} & \hline 6.1 \\ & 6.2 \end{aligned}$	Inner Product Spaces HW 6.1: 17, 18, 27, 28, T/F: b-f Angles Properties of Inner Product Spaces HW 6.2: 3, 4, 9, 10, 13, 14, 16, 21, 23, T/F: e, f	$\begin{gathered} \text { Quiz } 7 \\ \text { due } \end{gathered}$
Tues 6/6	6.3	Orthogonal and Orthonormal Bases HW 6.3: 2, 5, 7, 8, 27-31 all, 37, 38, 44, T/F: a, d	
Wed 6/7	7.1	Orthogonal Matrices HW 7.1: 1-11 odd, T/F: a, d, e	
Thur 6/8	7.2	Orthogonal Diagonalization HW 7.2: 7, 9-13 all	Quiz 8 due Monday $(5.2-7.1)$
Week 10			
Mon 6/12	9.1	$L U$ Decomposition Elementary Matrices HW 9.1: 1-6, T/F: a-c	$\begin{gathered} \text { Quiz } 8 \\ \text { due } \end{gathered}$
Tues 6/13	8.1	General Linear Transformations Kernel and Range HW 8.1: 1, 3, 4, 7, 10, 13a, 14a, 15, 17, 23, 25, 27, 33, 35, T/F: b-h	
Wed 6/14	Exam 4 (4.1-4.9, 5.1, 5.2, 6.1-6.3, 7.1, 7.2, 9.1)		
Thur 6/15	8.2	One-to-one and Onto (Injectivity and Surjectivity) Bijectivity and Isomorphisms Composition	Podcast \#4 due Sunday Quiz 9 due Tuesday (7.2, 9.1, 8.1)

Week 11					
Tues 6/20	8.2	$\begin{array}{l}\text { Inverse Linear Transformations } \\ \text { HW 8.2: 3, 7, 11, 13, 19-27 odd, 31, 45, T/F: a-d, f-i } \\ \text { Isomorphisms and Euclidean Spaces } \mathbb{R}^{n}\end{array}$	$\begin{array}{c}\text { Quiz 9 } \\ \text { due }\end{array}$		
HW 8.3: 1, 3, 9, 11, 17, 19, 22-24, T/F: all					

Student Learning Outcome(s):

*Construct and evaluate linear systems/models to solve application problems.
*Solve problems by deciding upon and applying appropriate algorithms/concepts from linear algebra.
*Apply theoretical principles of linear algebra to define properties of linear transformations, matrices and vector spaces.

Office Hours:

In-Person S-43 T,W 11:30 AM 12:20 PM

