Chemistry 1C Sec 02 Summer 21

Course times: Lecture: MW 11:30 AM - 1:00 PM Lab 02 time to be determined

Instructor: John Cihonski, e-mail: cihonskijohn@fhda.edu

Office Hours: After Lecture/Lab meeting – as needed

General:

<u>Course Goal</u>: Under the current restrictive conditions provide a Chem 1C course with sufficient content so that those in the sciences can succeed academically – under safe physical conditions. It is also a *personal* goal for you to understand the course materials and be able to solve problems (apply) using this understanding.

Chemistry 1C will focus on the following topics:

Chapter 13 Mixtures and Solutions

Chapter 19 Ionic Equilibria

Chapter 21 Electrochemistry

Chapter 23 Transition Metals and Coordination Compounds

Approach to this on-line course:

- <u>Canvas</u> We will not be relying on Canvas in this course. We will be relying on Zoom, You-Tube, My Portal and De Anza email for communication and pdf support.
- <u>Textbook</u> Silberberg, 8e (or 9e). Read the recommended sections and work the in text example problems including the example follow-up problems labeled A & B. For adequate mastery of the material insure that you can work these problems without looking at hints or solutions. If your copy is not the 8th or 9th then you should share a copy or obtain a pdf of the homework from a friend who has an 8e. (See homework below)
- <u>Lectures</u> After reading the recommended text material watch the on-line lectures (and take photos of the slides and worked examples for personal use if you find them useful). The material is similar to the text. Access to the Lecture videos located on You-Tube is easy. See the example below:

Lecture	Chapter 13 Solution Related		
	Topic: Definitions, Concentrations & Calculations		
T1 P1 55m	Sign into lecture with You-Tube code for Zoom lecture – cut & paste entire code into your		
	browser, for example try: https://youtu.be/76rd4mY_vnc		

T1 P1 means Topic 1 and Part 1

You should also be able to solve the on slide questions (labeled as "Q" in red), they are similar to the text and homework and they will be the main focus for the exams. Think of the lectures as being your 'Exam Study Guide." As a follow up to the on-line lectures we will periodically do open discussion sessions to answer questions related to the lectures and homework. Timing and frequency – to be determined.

• Homework (HW) is from the text (Silberberg 8e/9th). The homework shouldn't be difficult assuming you have read the text, studied the in-text examples and did the lectures. Your homework will be submitted as a handwritten based pdf at select times for grading. Typed copies of the homework will not be accepted. Since most answers are provided in the back of the text I will be looking for three things: (1) at a minimum you attempt every problem, (2) that your work is legible and coherent (meaning that I can read and follow it) and (3) that you show your work (justify/support your result) and explain your reasoning. Your homework will be graded as either acceptable or unacceptable. See extra credit, XC, below.

- Laboratory Experiments (LE) The laboratory effort will have two parts:
 - O Part A (Mandatory, value: 25 pts/experiment) We will use Hands on Labs (HOL) lab kits to study and apply the theory for select text topics. Each lab will focus on a specific topic and your written report should demonstrate that you have learned the concepts, made a professional record of the experiment and wrote a short, focused formal synopsis or summary for "management."
 - o Part B (Extra Credit (XC) –See next section below) In this part we will address open ended application problems (open ended here implies more than one correct approach and/or answer to the problem is possible) *related to what we studied in Part A* and it may or may not include additional lab work.

The class will be assigned the same problem and you are free to discuss the problem with each other. However, everyone is responsible for their personal *independent* experimental and write up efforts. These lab problems present an opportunity to demonstrate that you can break a problem down into simple steps and that you can provide a rational, reasonable and meaningful solution. Your report should also be a rational, coherent, readable and independently written description of your effort. Your report should include calculations or example calculations as necessary. *An example report will be provided and discussed in class prior to the first experiment*. Think of this from more of a job or internship perspective than a classroom situation. LE grading for Part A will be on a 0, 5, 15, 20 or 25 pt basis.

- Extra Credit (XC) See a short description of Part B above. The Part B experiment and its write up will be included in the Part A written report. The report format will be similar to that used for Part A for consistence and ease of reporting. Grading of Part B will be on a 5 pts/experiment basis. Each of the three Part 2 XC's will be graded on a 0, 1, 3, 5 point basis assuming you qualify for the XC meaning you completed your HW with an acceptable rating. Your XC points are a combination of the number of acceptable HW's and the number of XC points you receive. Assume you did 2 of the 4 HWs and you received a 5, 1 and 3 on the XCs then the points that will apply to your grade are: (2 HW/3 Possible XC) x (5 + 1 + 3 pts) = 6.0 pts applied to your final average
- <u>Exams</u> There will be two (2) exams A mid-term, Exam 1, covering the first two chapters and an Exam 2 that will only cover the last two chapters. Exam specifics will be discussed further at the appropriate time but be aware that lab related questions/problems are fair game on the exams.
- <u>Plagiarism</u> is presenting someone else's work or idea(s) as your own. This is a common occurrence and it will not be tolerated. If caught you will be given a "0" for the assignment and you will be *further penalized the same number of points as the assignment is worth*. E.g. if the assignment is worth 25 points then a penalty score of -25 will be awarded for plagiarism.

Grading:

Exams (Mid-term + Final) (2 x 100 pts)	200	
Lab problems (3 x 25 pts)	75	
Home Work (Acceptable or Unacceptable)		
Total Points:	275	

Instructor Optional Extra Credit (XC):

Possible XC for Acceptable Chapter HW $3 \times 5 \text{ pts} = 15 \text{ pts max or } 5.5\%$

Grading: A (100-92%), B (91+80), C (79+65), D (64+55)

Quarter Calendar: Chem 1C Summer 21

Week of:	Monday	Tuesday	Wednesday	Thursday
Wk-1	Course Intro & Start C13	Do C13 slide intro	Discuss LE + XC in general	C13 HW Q & A
June 27	Provide C13 Assignment Sheet	General Q & A on course	Provide LE sample reports	
34110 27				
		Census. Order Lab Kit from DA	Do C19 slide intro	Provide $C13$ LE + XC pdf and
	HOLIDAY	bookstore & Start C19		do lab introduction
Wk-2		Provide <mark>C19</mark> Assignment Sheet		
July 04		Do C13 lecture slide & HW		
		Q&A		
		C13 HW due by midnight		
	Lab kit delivery status?	Do C13 LE + XC as "Hands on	Provide $C19$ LE + XC pdf and	Do C13 & C19 lecture slide
Wk-3	C19 HW due	Lab" and help session	do intro	wrap up & review for Exam 1
July 11				C13 LE & XC report due Sa
				17 th by midnight
	Grade check & Exam 1 (E1) –	Do C19 LE + XC as "Hands on	E1 Grade results + short Exam	Q&A to clean up C19 & C21
Wk-4	covering C13 & C19	Lab" and help session	review	assignments coming due
July 18	Start C21			C19 LE & XC report due Sa
	Provide <mark>C21</mark> Assignment Sheet			24 th by midnight
	Start C23, Provide C23	Do C23 lecture slide & HW	C21 LE + XC as "Hands on	C23 lecture slide & HW Q&A
Wk-5	Assignment Sheet	Q&A	Lab" and help session	
July 25	Provide $C21$ LE + XC pdf and			
	do intro			
	C21 HW due			
	To be determined.	To be determined.	C21 & C23 Exam 2 review	Grade Check & Exam 2 –
Wk-6				After E2 graded will provide
Aug 01	C23 HW due	C21 LE & XC report due by		individual E2 & final grades by
		today by midnight		e-mail request

Email addresses for HW, LP, Exam & XC submissions: Section 02 use: jlcihonski@juno.com

There is a 20%/day late penalty on all assignments (HW, LEs, Exams & XCs) assessed based on the email time they are received. Example, if an exam is due by 6 PM of a certain day then an email received after 6 PM that day is considered to be one day late and the clock restarts at midnight.

Student Learning Outcome(s):

- *Apply the principles of equilibrium and thermodynamics to electrochemical systems.
- *Apply the principles of transition metail chemistry to predict outcomes of chemical reactions and physical properties.
- *Evaluate isotopic decay pathways.
- *Demonstrate a knowledge of intermolecular forces.