Chapter 9, Section 1

Exponential Functions

Definition of an Exponential Function

The exponential function 'f' with base 'b' is defined by

 $f(x) = b^x$ or $y = b^x$

Where b is a positive constant other than 1 (b > 0 and b \neq 1) and x is any real number.

Examples:

f(x) = 2^x g(x) = 10^x h(x) = 3^{x+1} f(x) =
$$\left(\frac{1}{2}\right)^{x-1}$$

Notice that the exponent is a variable.

Following functions are not exponential functions.

$$F(x) = x^{2}$$
 $g(x) = (-1)^{x}$

Evaluate an Exponential Function

The exponential function $f(x) = 42.2(1.56)^x$ models the average amount spent, f(x) in dollars, at a shopping mall after x hours. What is the average amount spent, to the nearest dollar, after four hours?

Solution:

Since interested in amount spent after four hours, x = 4

Thus f(4) = $42.2(1.56)^4$

Use a calculator: f(4) = 250

Graph $f(x) = 2^x$

Solution:

Set up a table of values then plot the points.

Characteristics of Exponential Functions of the Form $f(x) = b^x$

- The domain of f(x) = b^x consists of all real numbers: (-∞,∞). The range of f(x) = b^x consists of all positive real numbers: (0,∞).
- 2. The graphs of all exponential functions of the form $f(x) = b^x$ pass through the point (0, 1) because $f(0) = b^0 = 1$ ($b \neq 0$). The *y*-intercept is 1.
- If b > 1, f(x) = b^x has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
- 4. If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function. The smaller the value of *b*, the steeper the decrease.
- The graph of f(x) = b^x approaches, but does not touch, the x-axis. The x-axis, or y = 0, is a horizontal asymptote.

Graph $f(x) = 3^x$

Graph g(x) = 3^{x-1}

Natural Base e

e irration number asspoximately 2.72, natural base.

Function $f(x) = e^x$, natural exponential function

Compound Interest.

Compounded Annually: $A = P(1+r)^{t}$

Where A, amount of money, P principal what will be worth after t years at interest rate, r

Compounded semiannually – interest paid twice a year, every six months

Compounded quartrly -interest paid four times a year, every three months

General, compound interest is paid n times a year, n compounding periods per year So formula adjucted to account the number of compounding periods in a year, n

$$\mathbf{A} = \mathbf{P} \left(\mathbf{1} + \frac{\mathbf{r}}{\mathbf{n}} \right)^{\mathbf{n}\mathbf{t}}$$

Coninuous compounding – number of compounding periods increases infinitely.

$$A = Pe^{rt}$$

Example:

Invest \$8000 for 6 years. Choose between two accounts, 7% per year, compounded monthly or 6.85% per year, compounded continuously.