Chapter 9, Section 1

Exponential Functions
Definition of an Exponential Function
The exponential function ' f ' with base ' b ' is defined by

$$
f(x)=b^{x} \text { or } y=b^{x}
$$

Where b is a positive constant other than $1(\mathrm{~b}>0$ and $\mathrm{b} \neq 1)$ and x is any real number.

Examples:
$f(x)=2^{x} \quad g(x)=10^{x} \quad h(x)=3^{x+1} \quad f(x)=\left(\frac{1}{2}\right)^{x-1}$
Notice that the exponent is a variable.
Following functions are not exponential functions.
$\mathrm{F}(\mathrm{x})=\mathrm{x}^{2} \quad \mathrm{~g}(\mathrm{x})=(-1)^{\mathrm{x}}$

Evaluate an Exponential Function

The exponential function $f(x)=42.2(1.56)^{x}$ models the average amount spent, $f(x)$ in dollars, at a shopping mall after x hours. What is the average amount spent, to the nearest dollar, after four hours?

Solution:
Since interested in amount spent after four hours, $x=4$
Thus $f(4)=42.2(1.56)^{4}$

Use a calculator: $\mathrm{f}(4)=250$

Graph $f(x)=2^{x}$
Solution:
Set up a table of values then plot the points.

Characteristics of Exponential Functions of the Form $f(x)=b^{x}$

1. The domain of $f(x)=b^{x}$ consists of all real numbers: $(-\infty, \infty)$. The range of $f(x)=b^{x}$ consists of all positive real numbers: $(0, \infty)$.
2. The graphs of all exponential functions of the form $f(x)=b^{x}$ pass through the point $(0,1)$ because $f(0)=b^{0}=1(b \neq 0)$. The y-intercept is 1 .
3. If $b>1, f(x)=b^{x}$ has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
4. If $0<b<1, f(x)=b^{x}$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.
5. The graph of $f(x)=b^{x}$ approaches, but does not touch, the x-axis. The x-axis, or $y=0$, is a horizontal asymptote.

Graph $f(x)=3^{x}$

Graph $g(x)=3^{x-1}$

Natural Base e
e irration number asspoximately 2.72 , natural base.
Function $f(x)=e^{x}$, natural exponential function

Compound Interest.
Compounded Annually: $\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{t}}$
Where A, amount of money, P principal what will be worth after t years at interest rate, r Compounded semiannually - interest paid twice a year, every six months

Compounded quartrly -interest paid four times a year, every three months

General, compound interest is paid n times a year, n compounding periods per year So formula adjucted to account the number of compounding periods in a year, n

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt}}
$$

Coninuous compounding - number of compounding periods increases infinitely.

$$
\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}
$$

Example:
Invest $\$ 8000$ for 6 years. Choose between two accounts, 7\% per year, compounded monthly or 6.85% per year, compounded continuously.

