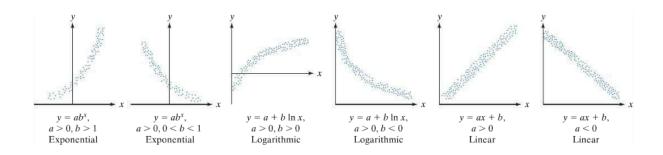

Chapter 9 Section 6 Exponential Growth and Decay; Modeling Data

Exponential Growth and Decay Models

The mathematical model for exponential growth or decay is given by

$$f(t) = A_0 e^{kt} \quad \text{or} \quad A = A_0 e^{kt}.$$

- If k > 0, the function models the amount, or size, of a growing entity. A_0 is the original amount, or size, of the growing entity at time t = 0, A is the amount at time t, and k is a constant representing the growth rate.
- If k < 0, the function models the amount, or size, of a decaying entity. A_0 is the original amount, or size, of the decaying entity at time t = 0, A is the amount at time t, and k is a constant representing the decay rate.



$$A = A_0 e^{kt}$$

A₀ original amount at time, t = 0 A final amount after a certain time, t

k > 0, growth,k < 0 decay.

Modeling Data

Expressing $y = ab^x$ in Base 'e'

 $y = ab^x$ is equivalent to $y = ae^{(\ln b)x}$