Chapter 9 Section 4
 Properties of Logarithms

Product Rule
Properties of exponents correspond to properties of logarithms.
Example: $b^{m} \cdot b^{n}=b^{m+n}$
Bases are the same, add the exponents.

The Product Rule:
Let b, M, and N be positive real numbers with $b \neq 1$

$$
\log _{\mathrm{b}}(\mathrm{MN})=\log _{\mathrm{b}} \mathrm{M}+\log _{\mathrm{b}} \mathrm{~N}
$$

The logarithm of a product is the sum of the logarithms.
When write a single logarithm as two or more logarithms it is said that one is expanding a logarithmic expression.

Expand each logarithmic expression
a) $\log _{4}(7 \cdot 5)$
b) $\log (10 x)$

The Quotient Rule

Divide exponential expression with the same base, subtract exponents.

$$
\frac{\mathrm{b}^{\mathrm{m}}}{\mathrm{~b}^{\mathrm{n}}}=\mathrm{b}^{\mathrm{m}-\mathrm{n}}
$$

The Quotient Rule
Let b, M, and N be positive real numbers with $b \neq 1$

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

The logarithm of a quotient is the difference of the logarithm.
Example:
Expand the expression
$\log \frac{x}{19}$
Solution:
$\log x-\log 19$

Expand each logarithmic expression:
a) $\log _{7}\left(\frac{19}{\mathrm{X}}\right)$
b) $\ln \left(\frac{e^{3}}{7}\right)$

The Power Rule:
Exponential expression is raised to a power, multiply exponents
$\left(b^{m}\right)^{n}=b^{m n}$
The Power Rule:
Let b and M be positive real numbers with $b \neq 1$, and let p be any read number, $\log _{b} M^{p}=p \log _{b} M$
The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

Pull the exponent to the front.
Example:
$\ln \mathrm{x}^{2}=2 \ln \mathrm{x}$
Try:
a) $\log _{5} 7^{4}$
b) $\ln \sqrt{x}$
c) $\log (4 x)^{5}$

Expanding Logarithmic Expressions

Properties for Expanding Logarithmic Expressions

For $M>0$ and $N>0$:

1. $\log _{b}(M N)=\log _{b} M+\log _{b} N \quad$ Product rule
2. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ Quotient rule
3. $\log _{b} M^{p}=p \log _{b} M$

Expand each expression as much as possible
a) $\log _{b}\left(x^{2} \sqrt{y}\right)$
b) $\log _{6}\left(\frac{\sqrt[3]{x}}{36 y^{4}}\right)$

Condensing Logarithmic Expressions
To condense a logarithmic express, write the expression as a single logarithmic expression.

Properties for Condensing Logarithmic Expressions

For $M>0$ and $N>0$:

1. $\log _{b} M+\log _{b} N=\log _{b}(M N)$ Product rule
2. $\log _{b} M-\log _{b} N=\log _{b}\left(\frac{M}{N}\right)$ Quotient rule
3. $p \log _{b} M=\log _{b} M^{p}$

Power rule

Write as a single logarithm
a) $\log _{4} 2+\log _{4} 32$
b) $\log (4 x-3)-\log x$

Coefficients of logarithms must be 1 before you can condense them using the product and quotient rule.

Example:
$2 \ln x+\ln (x+1)$
$\ln x^{2}+\ln (x+1)$
$\ln \left[x^{2}(x+1)\right]$
Write as a single logarithm
a) $\frac{1}{2} \log x+4 \log (x-1)$
b) $3 \ln (x+7)-\ln x$
c) $4 \log _{b} x-2 \log _{b} 6-\frac{1}{2} \log _{b} y$

The Change-of-Base Property
Calculators can give the values of both common logarithms (base 10) and natural logarithms (base e). To find the logarithm of any other base, use the change-of-base property.

The Change-of-Base Property
For any logarithmic base ' a ' and ' b ', and any positive number M,

$$
\log _{\mathrm{b}} \mathrm{M}=\frac{\log _{\mathrm{a}} \mathrm{M}}{\log _{\mathrm{a}} \mathrm{~b}}
$$

Base ' b ' is the base of the original logarithm. Base ' a ' is a new base that is introduced. This property allows to change from base ' b ' to any new base ' a ' as long as the newly introduced base is a positive and not equal to 1 .

This property is used to write a logarithm in terms of quantities that can be evaluated with a calculator.

The Change-of-Base Property: Introducing Common and Natural Logarithms

Introducing Common Logarithms

$$
\log _{b} M=\frac{\log M}{\log b}
$$

Introducing Natural Logarithms

$$
\log _{b} M=\frac{\ln M}{\ln b}
$$

Use common logarithms to evaluate $\log _{5} 140$

Solution:

Use the change-of-base property to change to the common logarithm or natural logarithm.
$\log _{5} 140$
$\frac{\log 140}{\log 5}$

Use your calculator to find the values of $\log 140$ and $\log 5$, then divide.
Evaluate to four decimal places.
a) $\log _{14} 87.5$
b) $\log _{0.3} 19$

