Chapter 9 Section 3

Logarithmic Functions
No horizontal line can be drawn that intersects the graph of an exponential function at more than one point. This means that the exponential functions in one-to-one and has an inverse.

Exponential function: $f(x)=b^{x}$
Find the inverse.
Do not have a method for solving $b^{y}=x$ for y.
Define a function, called the logarithmic function to solve this equation for y.
The inverse function of the exponential function with base ' b ' is called the logarithmic function with base ' b '.

Definition of the Logarithmic Function:
For $\mathrm{x}>0$ and $\mathrm{b}>0, \mathrm{~b} \neq 1$

$$
\begin{aligned}
& y=\log _{b} x \\
& \text { is equivalent to } b^{y}=x
\end{aligned}
$$

$y=\log _{b} x$ and $b^{y}=x$ are different ways of expressing the same thing.
First equation: logarithmic form
Second equation: exponential form.

Change to Exponential form:
a) $2=\log _{5} \mathrm{x}$
b) $\log _{b} 64=3$
c) $\log _{3} 7=y$

Change to logarithmic form.
a) $12^{2}=\mathrm{x}$
b) $\mathrm{b}^{3}=8$
c) $e^{y}=9$

Evaluation of Logarithms
a) $\log _{2} 16$
b) $\log _{3} 9$
c) $\log _{25} 5$

Solution:
Rewrite in exponential form and observe.

Basic Properties:

$$
\begin{array}{ll}
\log _{b} b=1 & \text { rewrite in exponential form: } b^{1}=b \\
\log _{b} 1=0 & \text { rewrite in exponential form: } b^{0}=1
\end{array}
$$

Check
Evaluate
a) $\log _{7} 7$
b) $\log _{5} 1$

Now, we can finish finding the inverse of $f(x)=b^{x}$
Step 1: Replace the $f(x)$ with y : $y=b^{x}$

Step 2: Interchange the x and $\mathrm{y}: \mathrm{x}=\mathrm{b}^{\mathrm{y}}$
Step 3: Solve for $\mathrm{y}: \mathrm{y}=\log _{\mathrm{b}} \mathrm{x}$
Step 4: Replace y with $\mathrm{f}^{-1}(\mathrm{x}): \mathrm{f}^{-1}(\mathrm{x})=\log _{\mathrm{b}} \mathrm{x}$
The inverse of an exponential functions is the logarithmic function with the same base.
Inverse Properties of Logarithms
For $\mathrm{b}>0$ and $\mathrm{b} \neq 1$,

$$
\begin{aligned}
& \log _{b} b^{x}=x \\
& b^{\log _{b} x}=x
\end{aligned}
$$

Check:
Evaluate:
a) $\log _{4} 4^{5}$
b) $6^{\log _{6} 9}$

Graph of Exponential and Logarithmic Function
Graph: $\mathrm{f}(\mathrm{x})=2^{\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=\log _{2} \mathrm{x}$
Solution:
What do you notice about the two functions?

Characteristics of Logarithmic Functions of the Form $f(x)=\log _{b} x$

1. The domain of $f(x)=\log _{b} x$ consists of all positive real numbers: $(0, \infty)$. The range of $f(x)=\log _{b} x$ consists of all real numbers: $(-\infty, \infty)$.
2. The graphs of all logarithmic functions of the form $f(x)=\log _{b} x$ pass through the point $(1,0)$ because $f(1)=\log _{b} 1=0$. The x-intercept is 1 .There is no y-intercept.
3. If $b>1, f(x)=\log _{b} x$ has a graph that goes up to the right and is an increasing function.
4. If $0<b<1, f(x)=\log _{b} x$ has a graph that goes down to the right and is a decreasing function.
5. The graph of $f(x)=\log _{b} x$ approaches, but does not touch, the y-axis. The y-axis, or $x=0$, is a vertical asymptote.

Domain of a Logarithmic Function
Domain of $f(x)=\log _{b} g(x)$ consists of all x for which $g(x)>0$
Example
Domain of $\mathrm{g}(\mathrm{x})=\log _{4}(\mathrm{x}+3)$ is $(-3 . \infty)$

Common Logarithms
Logarithms functions with the base 10 - common logarithmic function.
Function $f(x)=\log _{10} x$ is usually expressed as $f(x)=\log x$.
The calculator with the LOG key can be used to evaluate common logarithms.
Evaluate:
a) $\log 1000$
b) $\log \frac{5}{2}$
c) $\frac{\log 5}{\log 2}$
d) $\log (-3)$

Properties of Common Logarithms

General Properties	Common Logarithms
1. $\log _{b} 1=0$	1. $\log 1=0$
2. $\log _{b} b=1$	2. $\log 10=1$
3. $\log _{b} b^{x}=x$	Inverse 4.
4. $b^{\log _{b} x}=x$	$\log 10^{x}=x$

Natural Logarithms

Logarithmic function with base e - natural logarithmic function
Function $f(x)=\log _{e} x$ is usually expressed as $f(x)=\ln x$, read 'el en of x^{\prime}.
The calculator with the LN key can be used to evaluate natural logarithms.

Evaluate:
a) $\ln 5$
b) $\frac{\ln 12}{\ln 5}$
c) $\ln 2.58$

The properties and domain for the natural logarithms and logarithmic functions are the same.

Properties of Natural Logarithms

General Properties	Natural Logarithms
1. $\log _{b} 1=0$	1. $\ln 1=0$
2. $\log _{b} b=1$	2. $\ln e=1$
3. $\log _{b} b^{x}=x$	Inverse
4. $\ln e^{x}=x$	

