Chapter 9 section 2
Composite and Inverse Functions.
Composite function
Notation: $f(g(x))$, read the composition of the function f with g. f of g of x
$(f \circ g)(x)=f(g(x))$
Read f of g of x OR f composed with g at x.
Evaluate:
$(f \circ g)(x)=0.85 x-300$
if $x=1400$

Solution:
$(f \circ g)(1400)=0.85(1400)-300$

The Composition of Functions

The composition of the function \boldsymbol{f} with \boldsymbol{g} is denoted by $f \circ g$ and is defined by the equation

$$
(f \circ g)(x)=f(g(x))
$$

The domain of the composite function $f \circ g$ is the set of all x such that

1. x is in the domain of g and
2. $g(x)$ is in the domain of f.

Forming Composite Functions
Given: $f(x)=3 x-4$ and $g(x)=x^{2}+6$
Find: $(f \circ g)(x)$

Solution
$(f \circ g)(x)$ means $f(g(x))$
$f(x)=3 x-4$, so replace x with $g(x)$
$\mathrm{f}\left(\mathrm{g}(\mathrm{x})=3\left(\mathrm{~g}(\mathrm{x})-4\right.\right.$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+6$
so $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x})=3(\mathrm{~g}(\mathrm{x}))-4$

$$
\begin{aligned}
& 3\left(x^{2}+6\right)-4 \\
& 3 x^{2}+18-4 \\
& 3 x^{2}+14
\end{aligned}
$$

Try: Given $g(x)=5 x+6$ and $g(x)=x^{2}-1$ find
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$

Inverse functions

Definition of the Inverse of a Function

Let f and g be two functions such that

$$
f(g(x))=x \quad \text { for every } x \text { in the domain of } g
$$

and

$$
g(f(x))=x \quad \text { for every } x \text { in the domain of } f
$$

The function g is the inverse of the function f, and is denoted by f^{-1} (read " f-inverse"). Thus, $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$. The domain of f is equal to the range of f^{-1}, and vice versa.

Show that f and g are inverses of each other, show

$$
f(g(x))=x \text { and } g(f(x))=x
$$

Example
Show that $f(x)=5 x$ and $g(x)=\frac{x}{5}$ are inverses.
Must show $f(g(x))=x$ and $g(f(x))=x$

Finding the Inverse of a Function.

Finding the Inverse of a Function

The equation for the inverse of a function f can be found as follows:

1. Replace $f(x)$ with y in the equation for $f(x)$.
2. Interchange x and y.
3. Solve for y. If this equation does not define y as a function of x, the function f does not have an inverse function and this procedure ends. If this equation does define y as a function of x, the function f has an inverse function.
4. If f has an inverse function, replace y in step 3 with $f^{-1}(x)$. We can verify our result by showing that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

Example: Find the inverse of $f(x)=7 x-5$
Solution:

1) Replace $f(x)$ with $y: y=7 x-5$
2) Interchange x and $y: x=7 y-5$
3) Solve for $y: y=\frac{x+5}{7}$
4) Replace y with $f^{-1}(x): f^{-1}(x)=\frac{x+5}{7}$

Try:
Find the inverse of $f(x)=2 x+7$

The Horizontal Line Test and One-to-One Functions

Horizontal Line Test is used to determine if a function has an inverse.

Horizontal line intersects the graph at no more than one point.
Function f has an inverse that is a function, f^{-1}, if there is no horizontal line that intersects the graph of the function f at more than one point.

Any function that passes the horizontal line test is a one-to-one function.
Graph the Inverse Function
Make a table of values of the function and the inverse, then graph.

