Chapter 7 Section 6 Radical Equations

A radical equation is an equation in which the variable occurs in a square root, cube root, or any higher root.

Variable(s) occur in radicand(s)

Example:

$$\sqrt{2x+3} = 5$$
 $\sqrt{3x+1} - \sqrt{x+4} = 1$ $\sqrt[3]{3x-1} + 4 = 0$

Solving Radical Equations

 $\sqrt{x} = 9$

$$\left(\sqrt{x}\right)^2 = 9^2$$
$$x = 81$$

We solve radical equations with nth roots by raising both sides of the equation to the nth power.

If n is even, the solutions may not be solutions of the original equation. Always check the proposed solutions with the original equation.

Solutions that are not solutions of the given equation are called **extraneous solutions**.

Solve: $\sqrt{x-3}+6=5$

Solution: Isolate a radical on one side.

Be sure to check the solution

Try: a) $\sqrt{5x-1} = 8$ b) $\sqrt{3x-2} - 5 = 0$ Solve: $x + \sqrt{26 - 11x} = 4$

Solution		
$\sqrt{26-11x} = 4-x$	Isolate a radical on one side.	
$\left(\sqrt{26-11x}\right)^2 = \left(4-x\right)^2$	Square both sides	
$26 - 11x = 18 - 8x + x^2$	Simplify	
$0 = x^2 + 3x - 10$		
x = -5 or x = 2	Solve the equation	
Check solution		

Try:
a)
$$\sqrt{2x+1} = x-7$$
 b) $3x - \sqrt{3x+7} = -5$

Solving Equations That Have Two Radicals

Solve: $\sqrt{3x+1} - \sqrt{x+4} = 1$

Solution $\sqrt{3x+1} - \sqrt{x+4} = 1$	
$\sqrt{3x+1} = \sqrt{x+4} + 1$	Isolate a radical on one side.
$\left(\sqrt{3x+1}\right)^2 = \left(\sqrt{x+4}+1\right)^2$	Square both sides
$3x+1=x+4+2\sqrt{x+4}+1$	Simplify
$3x+1=x+5+2\sqrt{x+4}$	Combine like terms
$2x - 4 = 2\sqrt{x + 4}$	Isolate a radical on one side.
$\left(2x-4\right)^2 = \left(2\sqrt{x+4}\right)^2$	Square both sides. Note: Before one does this step. Could you have done something else?
$4x^2 - 16x + 16 = 4x + 16$	Simplify
$4x^2 - 20x = 0$	Solve the quadratic equation
x = 0 or x = 5	Possible solutions.
Check solutions	

Try: a) $\sqrt{x+5} - \sqrt{x-3} = 2$	b) $\sqrt{6x+2} = \sqrt{5x+3}$	c) $(3x-6)^{\frac{1}{3}}+5=8$

Solving a Radical Equation Solve:

$$(3x-1)^{\frac{1}{3}}+4=0$$

Solution:

$$(3x-1)^{\frac{1}{3}}+4=0$$

One can rewrite in radical form, but it is not necessary.

 $\sqrt[3]{3x-1} + 4 = 0$ $(3x-1)^{\frac{1}{3}} = -4$ $\left[(2x-1)^{\frac{1}{2}}\right]^{3} (x-1)^{3}$

$$\left\lfloor \left(3x-1\right)^{\overline{3}} \right\rfloor = \left(-4\right)^{\overline{3}}$$
$$3x-1=-64$$
$$x=-21$$

Isolate the radical term, term with the rational exponent

Cube both sides

Simplify Solve the equation

Try:

a)
$$(x-3)^{\frac{1}{2}}+8=6$$

b) $3x^{\frac{1}{3}}=(x^2+17x)^{\frac{1}{3}}$

Extra: Solve the formula for the specified variable.

• Solve for V:
$$r = \sqrt{\frac{3V}{\pi h}}$$
 • Solve for m: $v = \sqrt{\frac{FR}{m}}$