Chapter 7 Section 6

Radical Equations

A radical equation is an equation in which the variable occurs in a square root, cube root, or any higher root.

Variable(s) occur in radicand(s)
Example:

$$
\sqrt{2 x+3}=5
$$

$$
\sqrt{3 x+1}-\sqrt{x+4}=1
$$

$$
\sqrt[3]{3 x-1}+4=0
$$

Solving Radical Equations
$\sqrt{x}=9$
$(\sqrt{x})^{2}=9^{2}$
$x=81$
We solve radical equations with nth roots by raising both sides of the equation to the nth power.
If n is even, the solutions may not be solutions of the original equation. Always check the proposed solutions with the original equation.

Solutions that are not solutions of the given equation are called extraneous solutions.

Solve:
$\sqrt{x-3}+6=5$

Solution: Isolate a radical on one side.

Be sure to check the solution

Try:
a) $\sqrt{5 x-1}=8$
b) $\sqrt{3 x-2}-5=0$

Solve:
$x+\sqrt{26-11 x}=4$

Solution
$\sqrt{26-11 x}=4-x \quad$ Isolate a radical on one side.
$(\sqrt{26-11 x})^{2}=(4-x)^{2} \quad$ Square both sides
$26-11 x=18-8 x+x^{2} \quad$ Simplify
$0=x^{2}+3 x-10$
$x=-5$ or $x=2$
Solve the equation
Check solution

Try:
a) $\sqrt{2 x+1}=x-7$
b) $3 x-\sqrt{3 x+7}=-5$

Solving Equations That Have Two Radicals
Solve:
$\sqrt{3 x+1}-\sqrt{x+4}=1$

Solution

$\sqrt{3 x+1}-\sqrt{x+4}=1$
$\sqrt{3 x+1}=\sqrt{x+4}+1$
Isolate a radical on one side.
$(\sqrt{3 x+1})^{2}=(\sqrt{x+4}+1)^{2}$
$3 x+1=x+4+2 \sqrt{x+4}+1$
Simplify
$3 x+1=x+5+2 \sqrt{x+4}$
Combine like terms
$2 x-4=2 \sqrt{x+4}$
$(2 x-4)^{2}=(2 \sqrt{x+4})^{2}$
Isolate a radical on one side.

Square both sides.
Note: Before one does this step. Could you have done something else?
$4 x^{2}-16 x+16=4 x+16$
Simplify
$4 x^{2}-20 x=0$
Solve the quadratic equation

Possible solutions.

Check solutions
Try:
a) $\sqrt{x+5}-\sqrt{x-3}=2$
b) $\sqrt{6 x+2}=\sqrt{5 x+3}$
c) $(3 x-6)^{\frac{1}{3}}+5=8$

Solving a Radical Equation

Solve:
$(3 x-1)^{\frac{1}{3}}+4=0$

Solution:
$(3 x-1)^{\frac{1}{3}}+4=0$

One can rewrite in radical form, but it is not necessary.
$\sqrt[3]{3 x-1}+4=0$
$(3 x-1)^{\frac{1}{3}}=-4$
Isolate the radical term, term with the rational exponent
$\left[(3 x-1)^{\frac{1}{3}}\right]^{3}=(-4)^{3}$
Cube both sides
$3 x-1=-64$
Simplify
$\mathrm{x}=-21$
Solve the equation

Try:
a) $(x-3)^{\frac{1}{2}}+8=6$
b) $3 x^{\frac{1}{3}}=\left(x^{2}+17 x\right)^{\frac{1}{3}}$

Extra:
Solve the formula for the specified variable.

- Solve for $\mathrm{V}: r=\sqrt{\frac{3 V}{\pi h}} \quad$ - Solve for $\mathrm{m}: v=\sqrt{\frac{F R}{m}}$

