Chapter 7 Section 3 Multiplying and Simplifying Radical Expressions

Product Rule for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$

If the root indexes are the same, then multiply the radicand and write as one radical, leaving the root index the same.

Example: a) $\sqrt{3} \cdot \sqrt{7}$ b) $\sqrt[9]{10x} \cdot \sqrt[9]{8x^4}$ Solution a) $\sqrt{3} \cdot \sqrt{7}$ b) $\sqrt[9]{10x} \cdot \sqrt[9]{8x^4}$ $\sqrt[9]{10x} \cdot \sqrt[9]{10x}$ $\sqrt[9]{10x} \cdot \sqrt[9]{10x}$ $\sqrt[9]{1$

Simplifying Radical Expressions by Factoring

A radical expression whose index is *n* is **simplified** when its radicand has no factors that are perfect *n*th powers. To simplify, use the following procedure:

- 1. Write the radicand as the product of two factors, one of which is the greatest perfect *n*th power.
- 2. Use the product rule to take the *n*th root of each factor.
- 3. Find the *n*th root of the perfect *n*th power.

Example:

Simplify: $\sqrt{28}$

Solution:

 $\sqrt{28}$ $\sqrt{4 \cdot 7}$ $\sqrt{4} \cdot \sqrt{7}$ $2\sqrt{7}$

Always write the whole number in front of the radical.

Simplify: $\sqrt[5]{64}$

Solution

[§]√64 [§]√32•2 2[§]√2

What about:

$$F(x) = \sqrt{2x^2 + 4x + 2}$$

Solution:

$$F(x) = \frac{\sqrt{2x^2 + 4x + 2}}{\sqrt{2(x^2 + 2x + 1)}}$$
factor out the GCF
$$\frac{\sqrt{2(x + 1)^2}}{|x + 1|\sqrt{2}}$$
factor
$$\frac{|x + 1|\sqrt{2}}{|x + 1|\sqrt{2}}$$
take square root

Note: When the exponent inside the radical and the root index are the same, then the simplification is the base

Example:

$$\frac{\sqrt{x^6}}{\sqrt{\left(x^3\right)^2}} \\
x^3$$

Example: $\sqrt{x^5y^{13}}$

Solution:

$$\sqrt{x^5y^{13}}$$

Since the root index is even, write the radicand with the largest even exponent

$$\frac{\sqrt{x^4 \cdot x \cdot y^{12} \cdot y}}{\sqrt{\left(x^2\right)^2 \cdot \left(y^6\right)^2 \cdot x \cdot y}}$$
$$x^2 y^6 \sqrt{x \cdot y}$$

Simplify a) $\sqrt{75}$	b)	5√64
Solution: a) $\sqrt{75}$ $\sqrt{25} \cdot \sqrt{3}$ $5\sqrt{3}$	b)	\$√64 \$√32•2 \$√32•\$√2 2\$√2

Try:

• $\sqrt{80}$ * $\sqrt[3]{40}$

Multiplying and Simplifying Radicals a) $\sqrt{15} \cdot \sqrt{3}$ b) $7\sqrt[3]{4} \cdot 5\sqrt[3]{6}$

Try these: Simplify completely

1) $\sqrt{5} \cdot \sqrt{7}$ 2) $\sqrt[4]{6x^2} \cdot \sqrt[4]{3x}$ 3) $\sqrt{28}$ 4) $\sqrt{x^8 y^7}$ 5) $\sqrt{40x^3}$ 6) $\sqrt{5x^3} \cdot \sqrt{3}$ 7) $\sqrt[3]{25x^4 y^3} \cdot \sqrt[3]{5xy^{12}}$ 8) $\sqrt[3]{y^{11}}$