Chapter 7 Section 1 Radical Expressions and Functions

Square Roots

 $5^2 = 25$

$$(-5)^2 = 25$$

reverse operation of squaring a number is finding the square root of the number

Example:

One square root of 25 is 5 because $5^2 = 25$

Another square root of 25 is -5 because $(-5)^2 = 25$

If $b^2 = a$, then b is the square root of a.

Symbol: $\sqrt{}$ denotes the positive or principal square root of a number. Example:

 $\sqrt{25} = 5$ because $5^2 = 25$ and 5 is positive.

Symbol: $\sqrt{}$ is used to denote the principal square root is called a radical sign. Number under the radical sign is called the radicand. Together is called a radical expression.

- $\sqrt{}$ denotes the negative square root of a number

$$-\sqrt{25} = -5$$
 because $(-5)^2 = 25$ and - 5 is negative.

Example 1: page 503. Evaluate: a) $\sqrt{81}$

b) $-\sqrt{9}$ e) $\sqrt{36+64}$

Square Root Function Defined: $f(x) = \sqrt{x}$ Domain: $[0, \infty)$ Graph by selecting nonnegative real numbers for x. Evaluating Square Root Functions: Example 2: page 504. a) $f(x) = \sqrt{5x-6}$: f(3)

Find:
$$f(x) = \sqrt{9x - 27}$$
: f(5)

Example 3: page 505: Finding the Domain of a Square Root Function $f(x) = \sqrt{3x+12}$

Find: $f(x) = \sqrt{9x - 27}$

Form:
$$\sqrt{a^2}$$

 $\sqrt{a^2} = a$??

Look at the following

$$\sqrt{4^2} = \sqrt{16} = 4$$
 and $\sqrt{(-4)^2} = \sqrt{16} = 4$
to get the positive value,

$$\sqrt{a^2} = |a|$$

Example 5: page 506 a) $\sqrt{(-6)^2}$ b) $\sqrt{(x-5)}$ c) $\sqrt{25x^6}$

Cube Roots and Cube Root Functions Cube root of a real number, a, is written $\sqrt[3]{a}$ $\sqrt[3]{a} = b$ means that $b^3 = a$

Example: $\sqrt[3]{64} = 4$ because $4^3 = 64$

Cube root of a negative number is a real number All numbers have cube roots. Cube root of positive number is positive, the cube root of a negative number is negative.

Cube root function: $f(x) = \sqrt[3]{x}$ Domain: All real numbers Evaluating Cube Root Functions $f(x) = \sqrt[3]{x-2}$; f(127)

$$\sqrt[3]{a^3} = a$$

Example 7: Page 508 $\sqrt[3]{-64x^3}$

Even and Odd nth Roots $\sqrt[n]{a}$ nth root of a, n called the index.

Index odd, same characteristics as cube roots. Index even, same characteristics as square roots.

Even root of a negative number is not a real number

 $\sqrt[n]{a^{n}}$ n even, $\sqrt[n]{a^{n}} = |a|$ n odd, $\sqrt[n]{a^{n}} = a$ Example 9: Page 510: a) $\sqrt[4]{(x-3)^{4}}$ b) $\sqrt[5]{(2x+7)^{5}}$