Chapter 6 section 3
 Complex Rational Expressions

Complex Rational Expressions - Complex Fractions have numerators or denominators containing one or more rational expressions.

Fractions in numerator and/or denominator
Example:
$\frac{\frac{1}{x}+\frac{y}{x^{2}}}{\frac{1}{y}+\frac{x}{y^{2}}}$

Simplifying Complex Rational Expressions
2 ways

1) Multiply both the numerator and denominator by the LCD of all rational expressions

Example:

$$
\frac{\frac{1}{x}+\frac{y}{x^{2}}}{\frac{1}{y}+\frac{x}{y^{2}}}
$$

Solution:
a) Find the LCD of all the denominators
x, x^{2}, y, y^{2}
LCD is $x^{2} y^{2}$
b) Multiply both the numerators and denominators by the LCD, $x^{2} y^{2}$

$$
\frac{\frac{1}{x}\left(\frac{x^{2} y^{2}}{1}\right)+\frac{y}{x^{2}}\left(\frac{x^{2} y^{2}}{1}\right)}{\frac{1}{y}\left(\frac{x^{2} y^{2}}{1}\right)+\frac{x}{y^{2}}\left(\frac{x^{2} y^{2}}{1}\right)}
$$

c) When you multiply, reduce

$$
\frac{x y^{2}+y^{3}}{x^{2} y+x^{3}}
$$

d) Factor and simplify

$$
\frac{y^{2}(x+y)}{x^{2}(x+y)}
$$

e) Write answer

$$
\frac{y^{2}}{x^{2}}
$$

Try:
a)

$$
\frac{\frac{4}{x+4}}{\frac{1}{x+4}-\frac{1}{x}}
$$

b)

$$
\frac{8 x^{-2}-2 x^{-1}}{10 x^{-1}-6 x^{-2}}
$$

2) Division

Simplify the numerator and denominator so that there is a single rational expression in the numerator and denominator.

Add or subtract the numerator and/or denominators so that there is a single fraction in the numerator and denominator.

Write the expression as a division.
Example:

$$
\begin{gathered}
\frac{1-\frac{1}{x^{2}}}{1-\frac{4}{x}+\frac{3}{x^{2}}} \\
\frac{\frac{x^{2}-1}{x^{2}}}{\frac{x^{2}-4 x+3}{x^{2}}}
\end{gathered}
$$

The major fraction bar means divide so:

$$
\frac{x^{2}-1}{x^{2}} \div \frac{x^{2}-4 x+3}{x^{2}}
$$

Change to a multiplication problem, by taking the reciprocal of the second fraction.

$$
\frac{x^{2}-1}{x^{2}} \cdot \frac{x^{2}}{x^{2}-4 x+3}
$$

Multiply, factor, reduce and write the answer.

$$
\frac{x+1}{x-3}
$$

Try this one:
c)

$$
\frac{\frac{2}{x+3}+\frac{5 x}{x^{2}-9}}{\frac{4}{x+3}+\frac{2}{x-3}}
$$

d)

$$
\frac{\frac{2}{x^{3} y}+\frac{5}{x y^{4}}}{\frac{5}{x^{3} y}-\frac{3}{x y}}
$$

