Chapter 6 section 1

Rational Expressions and Functions: Multiplying and Dividing
Polynomial: single term or sum of two or more terms containing variables with whole-number exponents.

$$
3 x, 4 x+3 y, 3 x^{2}-5 y^{3}
$$

Rational Expression: polynomial divided by a nonzero polynomial.

$$
\frac{120 x}{100-x} \quad \frac{2 x+7}{1-x^{2}}
$$

Rational Function: Function defined by a formula that is a rational expression.

$$
f(x)=\frac{2}{x+4}
$$

Domain of a rational function: Set of all real numbers except those that made the denominator zero.

$$
f(x)=\frac{2}{x+4}
$$

If $x=-4$, the fraction is not defined so the value $x=-4$ is excluded from the domain.
Domain of $f=(-\infty,-4) \cup(-4, \infty)$

1) Find the domain: $\mathrm{f}(\mathrm{x})=\frac{2 x-3}{(x+4)(x-1)}$

Simplifying rational expression (reduce fractions)

Simplifying Rational Expressions

1. Factor the numerator and the denominator completely.
2. Divide both the numerator and the denominator by any common factors.

Simplify:
$\frac{x^{2}+4 x+3}{x+1}$
Solution:
Factor the numerator and denominator

$$
\frac{(x+1)(x+3)}{1(x+1)}
$$

Reduce

$$
\begin{aligned}
& \frac{(x+1)(x+3)}{1(x+1)} \\
& x+3 \text { and } x \neq-1
\end{aligned}
$$

Try these
2) $\frac{4 x+20}{x^{2}+5 x}$
3) $\frac{x^{2}+3 x y-10 y^{2}}{3 x^{2}-7 x y+2 y^{2}}$

Explain why the following are incorrect:
4) 1

$$
\frac{x^{2}-4}{4}
$$

$$
1
$$

$$
x^{2}-1
$$

5) $x \quad 3$
$\frac{x^{2}-9}{x-3}$

11
x-3

Multiplying and Dividing Rational Expressions

Rewrite all division problems as multiplication then multiply.
Division: Take the reciprocal of the divisor and multiply
Note: the divisor is the second expression in a division problem
Dividend \div divisor $=$ quotient

$$
\begin{aligned}
& \frac{x}{7} \div \frac{6}{y} \\
& \frac{x}{7} \cdot \frac{y}{6}
\end{aligned}
$$

Change to multiplication:
6)

$$
\frac{7}{x-5} \div \frac{28}{3 y-15}
$$

7)

$$
\frac{y^{2}+y}{y^{2}-4} \div \frac{y^{2}-1}{y^{2}+5 y+6}
$$

Multiply Rational Expression.

- Factor the numerators and denominators completely
- Divide the numerators and denominators by the common factor
- Multiply the remaining factors in the numerator and denominator

Example

$$
\begin{aligned}
& \frac{x+3}{x-4} \cdot \frac{x^{2}-2 x-8}{x^{2}-9} \\
& \frac{1(x+3)}{1(x-4)} \cdot \frac{(x-4)(x+2)}{(x+3)(x-3)} \\
& \frac{1(x+3)}{1(x-4)} \cdot \frac{(x-4)(x+2)}{(x+3)(x-3)} \\
& \frac{x+2}{x-3}
\end{aligned}
$$

Try These:

$$
\frac{x^{2}-y^{2}}{x} \cdot \frac{x^{2}+x y}{x+y}
$$

\bullet

$$
\frac{x^{2}-4 y^{2}}{x^{2}+3 x y+2 y^{2}} \div \frac{x^{2}-4 x y+4 y^{2}}{x+y}
$$

