Trinomial: three terms
Form: $a x^{2}+b x+c$
Quadratic term: $a x^{2}$
Linear term: bx
Constant term: c
Factoring by groups.

Factor: $2 x^{2}+11 x+12$
Step 1: multiply ac
$2 \cdot 12=24$
Step 2: Find two factors of 24 whose sum is b or 11
List the factors of 24
1 - 24
$2 \cdot 12$
$3 \cdot 8$ product is 24 and the sum is 11 .
Step 3: Rewrite the middle term using the two factors found in step 2
$2 x^{2}+3 x+8 x+12$

Step 4: Group the first 2 and last 2 terms
$\left(2 x^{2}+3 x\right)+(8 x+12)$
Step5: Factor and factor
$x(2 x+3)+4(2 x+3)$
$(x+4)(2 x+3)$
Step 6: Check
Multiply the two binomials and should get the original polynomial

[^0]
Way 2: Steps 1, 2 same

Factor: $2 x^{2}+11 x+12$
Step 1: multiply ac
$2 \cdot 12=24$
Step 2: Find two factors of 24 whose sum is b or 11
List the factors of 24

```
1•24
2•12
3-8 product is 24 and the sum is 11.
```

Step 3:
Using the two numbers found in step 2, divide each by the coefficient of the quadratic term

$$
\frac{3}{2} \text { and } \frac{8}{2} \quad \frac{8}{2}=4
$$

with the fraction, the 2 is the linear term and 3 is the constant term in one of the factored terms

$$
(2 x+3)(x+4)
$$

Way 3: Using a table - Area model
 Steps 1, 2 same

Factor: $2 x^{2}+11 x+12$
Step 1: multiply ac
$2 \cdot 12=24$

Step 2: Find two factors of 24 whose sum is b or 11
List the factors of 24
$1 \cdot 24$
$2 \cdot 12$
$3 \cdot 8$ product is 24 and the sum is 11 .
Step 3:
Set up a box with information in step 2 and the quadratic term and constant term

	$2 x^{2}$	8 x
	3 x	12

Step 4:
Factor the horizontal and vertical and put the common factor on the left side and on top

	\mathbf{x}	$\mathbf{4}$
$\mathbf{2 x}$	$2 x^{2}$	8 x
$\mathbf{3}$	3 x	12

Step 5:
Write the factors: top and side

$$
(x+4)(2 x+3)
$$

Factor: $5 x^{2}+14 x+8$
This is the form $a x^{2}+b x+c$ where $\mathrm{a}=5, \mathrm{~b}=14, \mathrm{c}=8$
Step 1: multiply ac
$5 \cdot 8=40$
Step 2: Find two factors of 40 whose sum is b or 14
List the factors of 40
$1 \cdot 40$
$2 \cdot 20$
$4 \cdot 10$ product is 40 and the sum is 14 .
Decide which way to factor:
group, area model

Grouping
Step 3: Rewrite the middle term using the two factors found in step 2

$$
5 x^{2}+4 x+10 x+8
$$

Step 4: Group the first 2 and last 2 terms
$\left(5 x^{2}+4 x\right)+(10 x+8)$
Step5: Factor and factor
$x(5 x+4)+2(5 x+4)$ $(5 x+4)(x+2)$
Step 6: Check
Multiply the two binomials and should get the original polynomial
Try using the area model.

Factoring with two variables
Example 4: page 354
$x^{2}-4 x y-21 y^{2}$

Example 5: page 355
$8 x^{3}-40 x^{2}-48 x$
Factor using substitution
$x^{6}-8 x^{3}+15$ or $\left(x^{3}\right)^{2}-8 x^{3}+15$

[^0]: Multiply the x^{2} term
 with the constant term

 Split $24 x^{2}$ into two
 terms that add to $11 x$
 Bring down $2 x^{2}$ and 12

 Group the $1^{\text {it }} 2$ terms
 and $2^{\text {nd }} 2$ terms - GCF!

 The grouping should be
 the same - that's the
 first binomial.
 The other binomial
 comes from the other two terms

