Multiply polynomials: $7 \mathrm{x}(3 \mathrm{x}+4)=21 \mathrm{x}^{2}+28 \mathrm{x}$
Can reverse the process: $21 x^{2}+28 x=7 x(3 x+4)$. This process is called factoring. Factoring: finding an equivalent expression that is a product.

Greatest Common Factor (GCF)

Find the greatest common factor between 21 and 28
Find the factors of each number
21: 1, 3, 7, 21
28: 1, 2, 4, 7, 14. 28
Look for the factors that are common to both: 1, 7
Pick the largest: 7
Try:
Find the GCF between
a) 20 and 36
b) $x^{2} y^{3}$ and $x^{3} y^{4}$

20: 1, 2, 4, 5, 10, 20
36: 1, 2, 3, 4, 9, 12, 18, 36
$x^{2} y^{3}: x x y y y$
$x^{3} y^{4}: x x x y y y y$

How many common x's: 2 so x^{2}
How many common y's: 3 so y^{3}
So, the GCF is: $x^{2} y^{3}$
Example 2: page 343
Factor:
a) $9 x^{5}+15 x^{3}$
b) $12 x^{3} y^{4}-4 x^{4} y^{3}+2 x^{5} y^{2}$

Factor a negative
$-3 x^{3}+12 x^{2}-15 x$

Factor by Grouping

Example 4: page 344
Factor:
a) $2(x-7)+9 a(x-7)$

What is the common factor?

Example 5: page 345
Factor: $x^{3}-5 x^{2}+3 x-15$
Group terms that have a common factor. Group first two and last two $\left(x^{3}-5 x^{2}\right)+(3 x-15)$ Factor the common factor

Try: $4 x^{2}+20 x-3 x y-15 y$
Try to use the area model.

	x	
	5	
$4 x$	$4 x^{2}$	$20 x$
$-3 y$	$-3 x y$	$-15 y$

