Chapter 5 Section 3 Greatest Common Factors and Factoring by Grouping

Multiply polynomials: $7x(3x + 4) = 21x^2 + 28x$

Can reverse the process: $21x^2 + 28x = 7x(3x + 4)$. This process is called factoring. Factoring: finding an equivalent expression that is a product.

Greatest Common Factor (GCF)

Find the greatest common factor between 21 and 28

Find the factors of each number 21: 1, 3, 7, 21

28: 1, 2, 4, 7, 14. 28

Look for the factors that are common to both: 1, 7 Pick the largest: 7

Trv: Find the GCF between b) $x^2 v^3$ and $x^3 v^4$ a) 20 and 36 20: 1, 2, 4, 5, 10, 20 36: 1, 2, 3, 4, 9, 12, 18, 36 $x^2 y^3$: x x y y y $x^3 y^4$: x x x y y y y How many common x's: 2 so x^2 How many common y's: 3 so y^3 So, the GCF is: $x^2 y^3$ Example 2: page 343 Factor: b) $12x^3y^4 - 4x^4y^3 + 2x^5y^2$ a) $9x^5 + 15x^3$ Factor a negative $-3x^3 + 12x^2 - 15x$

Factor by Grouping

Example 4: page 344 Factor: a) 2(x - 7) + 9a(x - 7)

What is the common factor?

Example 5: page 345 Factor: $x^3 - 5x^2 + 3x - 15$ Group terms that have a common factor. Group first two and last two $(x^3 - 5x^2) + (3x - 15)$ Factor the common factor

Try: $4x^2 + 20x - 3xy - 15y$

Try to use the area model.

	Х	5
4x	4x ²	20x
-3y	-3xy	-15y