DIRECTIONS To receive full credit, you must provide complete legible solutions to the following problems in the space provided. No Attached papers. Transfer all your answers to the space provided.

1. Find a parametric equations and a vector equation for $Ans_{decomposition}$ the line through the points (3,2,-1), (1,1,-2)

2. Find the equation, in vector form, of the line perpendicular Ans______ to the given plane and passing through the point. 2x - y + z = 4, (1,2,4)

3. Find a vector equation for the **line segment** from (4,-1,4) to (6,7,3).

Ans_____

4. Find an equation of the plane that contains the three points Ans_(1,2,1, (2,-1,1), (2,3,2))

5. Find an equation of the plane that passes through the point Ans______(3, 4, 5) and contains the line x = 5t, y = 3+t, z = 4-t

6. Find the distance from the point to the given line. Ans______ by using a vector perpendicular to the line. $(5,1,-1); \quad x = 1+t, \ y = 3-2t, \ z = 3-3t$

7. Find the distance from the point to the given plane, by using a the projection of a vector through the point on to a normal to the plane. $(1,-3,2), \quad 3x+2y+6z=5$

Ans