Last Name

DIRECTIONS: To receive full credit, you must provide complete legible solutions to the following problems in the space provided.

- 2.a Use the fact that the population was 250 million in 1990 (t = 0) to formulate a logistic model for the US population. (Assume the carrying capacity is 4000 million. Assume P is the population in millions, k is the relative growth rate, and t is the time in years since 1990.)

		Ans
b.	Determine the value of k in your model by using the fact that the population in 2000 was 275 million.	Ans

c. Use your model to predict the US population in the year Ans______ 2100. 3. Let's modify the logistic differential equation of this example as follows:

$$\frac{dP}{dt} = 0.2P \left(1 - \frac{p}{1000}\right) - 32$$

- a. Suppose P(t) represents a fish population at time t, where t is measured in weeks. Explain the meaning of the final term in the equation (-32).
- Ans The term -32 represents a harvesting of fish at a constant rate in this case, 32 fish/week This is the rate at which fish are caught.
- b. Draw a direction field for this differential equation. Use the direction field to sketch several solution curves. Use a graphing utility to produce the direction field then paste it on the space below.

c.	What are the equilibrium solutions?	Ans
d.	Describe what happens to the fish population for various initial populations.	
For	0 < P0 < 200,	Ans
For	$P_0 = 200,$	Ans
For	200 < P0 < 800,	Ans
For	$P_0 = 800, P(t)$	Ans
For	$P_0 > 800, P(t)$	Ans

e. Solve this differential equation explicitly, either by using partial fractions or with a computer algebra system. Use the initial populations 150.