DIRECTIONS To receive full credit, you must provide complete legible solutions to the following problems in the space provided

1. Solve equation $E I \frac{d^{4} y}{d x^{4}}=w(x)$ subject to the appropriate boundary conditions. The beam is of length L , and w_{0} is a constant.
a. The beam is embedded at its left end and simply supported at its right end, and $\mathrm{w}(\mathrm{x})=\mathrm{w}_{0}, 0<\mathrm{x}<\mathrm{L}$.
b. Use a graphing utility to graph the deflection curve when $\mathrm{w}_{0}=48 \mathrm{EI}$ and $\mathrm{L}=1$.
2. Find the eigenvalues $\lambda \mathrm{n}$ and eigenfunctions $\mathrm{yn}(\mathrm{x})$ for the given boundary-value problem. (Give your answers in terms of n makino sure that each value of n corresponds to a unique eigenvalue.) $y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y^{\prime}(\pi)=0$
3. The given differential equation is a model of an undamped spring/mass system in which the restoring force $\mathrm{F}(\mathrm{x})$ in (1)

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+F(x)=0 \tag{1}
\end{equation*}
$$

is nonlinear. For the equation below use a numerical solver to plot the solution curves that satisfy the given initial conditions.

$$
\frac{d^{2} x}{d t^{2}}+x^{3}=0, x(0)=1, x^{\prime}(0)=1 ; x(0)=\frac{3}{4}, x^{\prime}(0)=-1
$$

