DIRECTIONS To receive full credit, you must provide complete legible solutions to the following problems in the space provided. No Attached papers. Transfer all your answers to the space provided.

1.Find a formula for the general term an of the sequence,
assuming that the pattern of the first few terms continues.Ans:(Assume that n begins with 1.)

$$\left\{-4,\frac{8}{3},-\frac{16}{9},\frac{32}{27},-\frac{64}{81},\cdots\right\}$$

2. Determine whether the sequence converges or diverges. If it converges, Ans: find the limit. Be sur to use limit laws to prove your answer.

a.
$$a_n = \frac{3^{n+1}}{4^n}$$

b.
$$a_n = \tan\left(\frac{3n\pi}{1+12n}\right)$$

Ans:_____

c.
$$a_n = \frac{5n!}{2^n}$$

Ans:_____

3. Use Calculus to prove that the given sequences are eventually monotone increasing or monotone decreasing or neither. And write the first five terms of the convergent subsequence.

a.
$$\left\{\frac{n^2}{n^2-1}\right\}_{n=2}^{\infty}$$

b.
$$\left\{\frac{n!}{5^n}\right\}_{n=1}^{\infty}$$

c.
$$\left\{\frac{\sqrt{4n^2+9}}{n}\right\}_{n=1}^{\infty}$$

4. Use the rigorous definition of a limit of a sequence to prove the limit statement.

$$\lim_{n \to \infty} \left(\frac{n-1}{n} \right) = 1$$